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vascular changes representing downstream effects that are not them-
selves causative of migraine4,5. However, genetic evidence favoring 
one theory over the other is lacking. At the phenotype level, migraine 
is defined by diagnostic criteria from the International Headache 
Society6. There are two prevalent subforms: migraine without aura, 
which is characterized by recurrent attacks of moderate or severe 
headache associated with nausea or hypersensitivity to light and 

Migraine is a debilitating neurological disorder affecting around one in seven people worldwide, but its molecular mechanisms 
remain poorly understood. There is some debate about whether migraine is a disease of vascular dysfunction or a result of 
neuronal dysfunction with secondary vascular changes. Genome-wide association (GWA) studies have thus far identified 
13 independent loci associated with migraine. To identify new susceptibility loci, we carried out a genetic study of migraine 
on 59,674 affected subjects and 316,078 controls from 22 GWA studies. We identified 44 independent single-nucleotide 
polymorphisms (SNPs) significantly associated with migraine risk (P < 5 × 10−8) that mapped to 38 distinct genomic loci, 
including 28 loci not previously reported and a locus that to our knowledge is the first to be identified on chromosome X.  
In subsequent computational analyses, the identified loci showed enrichment for genes expressed in vascular and smooth  
muscle tissues, consistent with a predominant theory of migraine that highlights vascular etiologies.

Meta-analysis of 375,000 individuals identifies 38 
susceptibility loci for migraine
Padhraig Gormley1–4,81, Verneri Anttila2,3,5,81, Bendik S Winsvold6–8, Priit Palta9, Tonu Esko2,10,11,  
Tune H Pers2,11–13, Kai-How Farh2,5,14, Ester Cuenca-Leon1–3,15, Mikko Muona9,16–18, Nicholas A Furlotte19, 
Tobias Kurth20,21, Andres Ingason22, George McMahon23, Lannie Ligthart24, Gisela M Terwindt25, Mikko Kallela26,  
Tobias M Freilinger27,28, Caroline Ran29, Scott G Gordon30, Anine H Stam25, Stacy Steinberg22, Guntram Borck31,  
Markku Koiranen32, Lydia Quaye33, Hieab H H Adams34,35, Terho Lehtimäki36, Antti-Pekka Sarin9, Juho Wedenoja37,  
David A Hinds19, Julie E Buring21,38, Markus Schürks39, Paul M Ridker21,38, Maria Gudlaug Hrafnsdottir40, 
Hreinn Stefansson22, Susan M Ring23, Jouke-Jan Hottenga24, Brenda W J H Penninx41, Markus Färkkilä26,  
Ville Artto26, Mari Kaunisto9, Salli Vepsäläinen26, Rainer Malik28, Andrew C Heath42, Pamela A F Madden42, 
Nicholas G Martin30, Grant W Montgomery30, Mitja I Kurki1–3,9,43, Mart Kals10, Reedik Mägi10, Kalle Pärn10, 
Eija Hämäläinen9, Hailiang Huang2,3,5, Andrea E Byrnes2,3,5, Lude Franke44, Jie Huang4, Evie Stergiakouli23,  
Phil H Lee1–3, Cynthia Sandor45, Caleb Webber45, Zameel Cader46,47, Bertram Muller-Myhsok48,76,93, Stefan Schreiber49,  
Thomas Meitinger50,51, Johan G Eriksson52,53, Veikko Salomaa53, Kauko Heikkilä54, Elizabeth Loehrer34,55, 
Andre G Uitterlinden56, Albert Hofman34, Cornelia M van Duijn34, Lynn Cherkas33, Linda M Pedersen6,  
Audun Stubhaug57,58, Christopher S Nielsen57,59, Minna Männikkö32, Evelin Mihailov10, Lili Milani10,  
Hartmut Göbel60, Ann-Louise Esserlind61, Anne Francke Christensen61, Thomas Folkmann Hansen62,  
Thomas Werge63–65, International Headache Genetics Consortium66, Jaakko Kaprio9,37,67, Arpo J Aromaa53,  
Olli Raitakari68,69, M Arfan Ikram34,35,70, Tim Spector33, Marjo-Riitta Järvelin32,71–73, Andres Metspalu10, 
Christian Kubisch74, David P Strachan75, Michel D Ferrari25, Andrea C Belin29, Martin Dichgans28,76,  
Maija Wessman9,16, Arn M J M van den Maagdenberg25,77, John-Anker Zwart6–8, Dorret I Boomsma24,  
George Davey Smith23, Kari Stefansson22,78, Nicholas Eriksson19, Mark J Daly2,3,5, Benjamin M Neale2,3,5,82,  
Jes Olesen61,82, Daniel I Chasman21,38,82, Dale R Nyholt79,82 & Aarno Palotie1–5,9,80,82

A full list of authors and affiliations appears at the end of the paper.

Received 27 October 2015; accepted 26 May 2016; published online 20 June 2016; corrected online 18 July 2016 (details online); doi:10.1038/ng.3598

Migraine is the third most common disease worldwide, with a life-
time prevalence of 15–20%, affecting up to 1 billion people across the 
globe1,2. It ranks as the seventh most disabling disease worldwide (and 
the most disabling neurological disease) in terms of years of life lost 
to disability1, and it is the third most costly neurological disorder, 
after dementia and stroke3. There is debate about whether migraine 
is a disease of vascular dysfunction or of neuronal dysfunction with 
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significantly higher expression in a particular tissue group relative to 
the others. For instance, four genes were expressed more actively in 
brain (GPR149, CFDP1, DOCK4, and MPPED2) than in other tissues, 
and eight genes were specifically active in vascular tissues (PRDM16, 
MEF2D, FHL5, C7orf10, YAP1, LRP1, ZCCHC14, and JAG1). Many 
other putative migraine loci genes were actively expressed in more 
than one tissue group.

Genomic inflation and LD-score regression analysis
To assess whether the 38 loci harbored true associations with 
migraine, rather than reflecting systematic differences between case 

and control samples (such as population stratification), we analyzed 
the genome-wide inflation of test statistics in our primary meta- 
analysis. As expected for a complex polygenic trait, the distribution 
of test statistics deviated from the null (genomic inflation factor 

GC = 1.24; Supplementary Fig. 4), which is in line with other large 
GWA study meta-analyses51–54. Because much of the inflation for  
a polygenic trait arises from LD between the causal SNPs and  
many other neighboring SNPs in the local region, we LD-pruned the 
data to create a set of LD-independent markers (in PLINK55 with  
a 250-kb sliding window and r2 > 0.2). The resulting genomic  
inflation was comparatively reduced ( GC = 1.15; Supplementary 

Table 1 Individual IHGC GWA studies with numbers of case and control samples used in the primary analysis (all migraine) and in the 
subtype analyses (migraine with aura and migraine without aura)

GWA study ID Full name of GWA study

All migraine Migraine with aura Migraine without aura

Cases Controls Cases Controls Cases Controls

23andMe 23andMe Inc. 30,465 143,147 - - - -
ALSPAC Avon Longitudinal Study of Parents and Children 3,134 5,103 - - - -
ATM Australian Twin Migraine 1,683 2,383 - - - -
B58C 1958 British Birth Cohort 1,165 4,141 - - - -
Danish HC Danish Headache Center 1,771 1,000 775 1,000 996 1,000
DeCODE deCODE Genetics Inc. 3,135 95,585 366 95,585 608 95,585
Dutch MA Dutch migraine with aura 734 5,211 734 5,211 - -
Dutch MO Dutch migraine without aura 1,115 2,028 - - 1,115 2,028
EGCUT Estonian Genome Center, University of Tartu 813 9,850 76 9,850 94 9,850
Finnish MA Finnish migraine with aura 933 2,715 933 2,715 - -
German MA German migraine with aura 1,071 1,010 1,071 1,010 - -
German MO German migraine without aura 1,160 1,647 - - 1,160 1,647
Health 2000 Health 2000 136 1,764 - - - -
HUNT Nord-Trøndelag Health Study 1,395 1,011 290 1,011 980 1,011
NFBC Northern Finnish Birth Cohort 756 4,393 - - - -
NTR/NESDA Netherlands Twin Register and the Netherlands  

 Study of Depression and Anxiety
1,636 3,819 544 3,819 615 3,819

Rotterdam III Rotterdam Study III 487 2,175 106 2,175 381 2,175
Swedish Twins Swedish Twin Registry 1,307 4,182 - - - -
Tromsø The Tromsø Study 660 2,407 - - - -
Twins UK Twins UK 618 2,334 202 2,334 416 2,334
WGHS Women’s Genome Health Study 5,122 18,108 1,177 18,108 1,826 18,108
Young Finns Young Finns 378 2,065 58 2,065 157 2,065

Total 59,674 316,078 6,332 144,883 8,348 139,622

Note that chromosome X genotype data were unavailable from three of the individual GWA studies (EGCUT, Rotterdam III, and Twins UK) and were partially unavailable from 
some of the control samples (specifically, the GSK controls) used for the German MO study, meaning that the samples analyzed for chromosome X represented 57,756 cases and 
299,109 controls. Complete data were available on the autosomes for all samples.
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Figure 1 Manhattan plot showing results of the primary meta-analysis of all migraine samples (59,674 case and 316,078 control). The horizontal  
axis shows the chromosomal position, and the vertical axis shows the significance of tested markers combined in a fixed-effects meta-analysis.  
Markers that reached genome-wide significance (P < 5 × 10−8, chi-square test, 1 d.f.) at previously known and/or newly identified loci are highlighted.
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HLA-DR*0401 or *0408 alleles. This finding indicates an
additive effect of the SNPs described in our study and the
previously reported HLA-DR*0401 or *0408 alleles (Supple-
mentary Table 2).

Based on the distribution of the SNPs rs4961252,
rs9272105 and the two HLA alleles HLA-DRB1*0401 and
0408, an individual risk for MS patients to develop
antibodies to IFN-b can be calculated (Table 2). The
combined odds ratio for both SNPs HLA-DRB1*0401/0408
is 5.32. Individuals who carry the protective SNPs
rs4961252-AA and rs9272105-AA and are HLA-DRB1*0401
or 0408 negative carry a low risk to develop antibodies
during IFN-b therapy. In contrast, individuals with the

rs4961252-GG and rs9272105-GG genotypes and the
HLA-DRB1*0401 or 0408 allele, are highly prone to develop
antibodies to IFN-b.

Discussion

Multiple sclerosis is a chronic disease of the central nervous
system that affects more than one million individuals
worldwide. It is a disease of young adults and over time
leads to severe disability in the majority of patients. IFN-b is
an effective treatment of MS and several hundred thousand
patients are on long-term IFN-b therapy. However, a
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Figure 3 Regional association plots for rs9272105 (a) and rs4961252 (b) with antibody titer in the initial genome-wide association study (GWAS).
The y axis indicates P-values (shown as !log10 values), linkage disequilibrium (r2) between each single-nucleotide polymorphism (SNP) and
rs9272105 and rs4961252, respectively, was calculated from our sample data and is represented by sliding hues of red. The recombination rates
given in centimorgans per million bases are shown in light blue and are based on the 1000 Genomes Project data. These plots were generated using
SNAP Version 2.2 (ref. 29).
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showed no significant association with development of
antibodies in the replication or the combined sample
(Supplementary Table 1).

The SNP within the HLA region, rs9272105, explains 3.5%
variance of the anti-IFN-b antibody response; the non-HLA-SNP
rs4961252 explains 2.6%. The result was independent of the
IFN-b formulation used.

A total of 634 patients were typed for HLA-class II alleles;
92 of these patients carried the HLA-DR*0401 or *0408
alleles, which were shown to be associated with an antibody

response to IFN-b.20 Within these 634 patients, the HLA-SNP
rs9272105 was associated with antibody titer with a P-value
of 3.69!10"6, the HLA-DR*0401 or *0408 alleles with
7.74!10"5. Linear regression analysis demonstrated an
independent effect of rs9272105, which is situated about
5 kb upstream of the HLA-DQA1 gene in the intergenic
region between the HLA-DRB1 and HLA-DQA1 genes, and
the HLA-DR*0401 or *0408 alleles (P-value: 1.95!10"4). We
found no interaction between the genome-wide significant
SNPs (rs9272105 and rs4961252) in our study and the

Figure 1 Overview of the primary genome-wide association scan involving 178 patients who developed binding or neutralizing antibodies to
interferons-b (IFN-b) and 184 patients who did not develop antibodies on IFN-b therapy. P-values (shown as "log10 values) for results of antibody
titer are plotted across the genome.
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XV.-The Correlation between Relatives on the Supposition of Mendelian Inherit-

ance.· By R. A. Fisher, B.A. Communicated by Professor J. ARTHUR 

THOMSON. (With Four Figures in Text.) 

(MS. received June 15, 1918. Read July 8, 1918. Issued 'eparately October 1, 1918.) 
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Several attempts have alrearly been made to interpret the well-established 
results of biometry in accordance with the :\[endelian scheme of inheritance. ft 
is here attempted to ascertain the biometrical properties of a population of a more 
general type than has hitherto been examined, inheritance in which follows this 
scheme. It is hopetl that in this way it will be possible to make a more exact 
analysis of the causes of human variability. The great body of available statistics 
show us that the deviations of a human measurement from its mean follow very 
closely the Normal Law of Errors, and, therefore, that the variability may be 
uniformly measured by the standard 1leviation corresponding to the square root 
of the mean square error. \Yhen there are t\vo independent causes of rnriability 
capable of producing in an otherwise uniform population distributions with standard 
rleviations o-1 all<l o-2 , it is found that tl1e distribution, when both causes act together, 
has a stanrlar<l deviation ,./o-1

2 +o-2
2• It is therefore desirable in analysi11g the 

causes of n1riability to deal "·ith the s11uare of the deviatio11 as the 
measure of rnriability. We shall term this quantity the Yariance of the normal 
population to which it refers, and we may now ascribe to the constituent causes 
fractions or of the total rnriance which th.ey together produce. It 
is llesirable on the one hand that the elementary ideas at the basis of the calculus 
of correlations should be clearly understood, and easily expressed in ordinary 
language, and on the other that loose phrases about the "percentage of causation," 
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402 R. A. FISHER ON THE CORRELATION BETWEEN 

1. Let us suppose that the difference caused by a 13ingle Mendelian factor is 
represented in its three phases by the difference of the quantities a, d, - a, and 
that these phases exist in any population with relative frequency P, 2Q, where 
P+ 2Q+R= 1. 

Then a population in which this factor is the only cause of variability has its 
mean at 

m= Pa+ 2Qd - Ha, 
so that 

P(a -m) + 2Q(d- m)- R(a+m)=O. 
Let now 

P(a- m)2 + 2Q(d- m)2 + R(a + m)2 = a2 (!) 

a 2 then is the varrnnce due to this factor, for it is en,sily seem that when two such 
factors are combined at random, the mean square deviation from the new mean is 
equal to the sum of the values of a2 for the two factors separately. In general the 
mean square deviation due to a number of such factors associated at random will be 
written 

To justify our statement that a 2 is the contribution which a single factor makes 
to the total variance, it is only necessary to show that when the number of such 
factors is large the distributions will take the normal form. 

lf now we write 
µ3 = P(a- m)3 + 2Q(d -m)3- R(a + m)3 

µ 4 = P(a- m)4 + 2Q(d-m)4 + R(a+ m)', 

and if M3 and M4 are the third and fourth moments of the populatiou, the variance 
of which is due solely to the random combination of such factors, it is ea,sy 
to see that 

":i.µ3 

M4 - 3cr4 = ::Z(0.1 - 3a4). 

Now the departurP from normality of the populatio11 may be measuTed by means of 
the two ratios 

The first of these is 
( lp.3)2 )3, 

and is of the onler l., where i1. is the number of favtors concerued, wltilc the second 
n 

differs from its Gaussian value 3 also by a quantity of the order l. 
n 

2. If there are a great number of different factors, so that (I" is large compared to 
every separate a, we may investigate the proportions in which the 1lifferent phases 
occur in a selected array of in<lividuals. Since the deviation of an indivi<lual is 
simply due to a random combination of the deviations of separate factors, we must 
expect a given array of deviation, let us say :r, to contain the phases of each factor 
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We generated a global genetic interaction network for Saccharomyces cerevisiae,
constructing more than 23 million double mutants, identifying about 550,000 negative and
about 350,000 positive genetic interactions. This comprehensive network maps genetic
interactions for essential gene pairs, highlighting essential genes as densely connected
hubs. Genetic interaction profiles enabled assembly of a hierarchical model of cell function,
including modules corresponding to protein complexes and pathways, biological
processes, and cellular compartments. Negative interactions connected functionally
related genes, mapped core bioprocesses, and identified pleiotropic genes, whereas
positive interactions often mapped general regulatory connections among gene pairs,
rather than shared functionality. The global network illustrates how coherent sets of
genetic interactions connect protein complex and pathway modules to map a functional
wiring diagram of the cell.

G
enetic interaction networks highlight mech-
anistic connections between genes and
their corresponding pathways (1). Genetic
interactions can also determine the rela-
tionship between genotype and phenotype

(2) and may contribute to the “missing herita-
bility,” or the lack of identified genetic deter-
minants underlying a phenotypic trait, in current
genome-wide association studies (3, 4). To ex-
plore the general principles of genetic networks,

we took a systematic approach to map genetic
interactions among gene pairs in the budding
yeast, Saccharomyces cerevisiae. Synthetic ge-
netic array (SGA) analysis automates the com-
binatorial construction of defined mutants and
enables the quantitative analysis of genetic in-
teractions (1, 5). A positive genetic interaction
describes a double mutant that exhibits a fitness
that is greater than expected based on the com-
bination of the two corresponding single mu-

tants. Conversely, a negative or synthetic lethal/
sick genetic interaction is identified when a
double mutant displays a fitness defect that is
more extreme than expected (1, 5). Synthetic
lethal interactions are of particular interest be-
cause they can be harnessed to identify new
antibiotic or cancer therapeutic targets (6, 7).
In this study, we both expand upon our pre-
vious analysis of genetic interactions associated
with nonessential genes (1) and also character-
ize genetic interactions involving the majority of
essential genes to generate a global yeast ge-
netic interaction network.

A global and quantitative genetic
network for yeast

To map genetic interactions between nonessen-
tial yeast genes (8), we generated a genome-scale
library of natMX-marked deletion mutant query
strains and crossed them to an array composed
of the corresponding kanMX-marked deletion
mutant collection (9, 10). We also systematically
examined genetic interactions between pairs
of essential genes (9, 10). To do so, we generated
temperature-sensitive (TS) mutant alleles, carry-
ing mutations that typically alter coding regions.
Our essential gene mutant collection consists
of 2001 array and/or query strains harboring
TS alleles corresponding to 868 unique essen-
tial genes, with ~600 of these genes represented
by two or more TS alleles, including strains for
~140 essential genes that were not represented
in previous strain collections (11, 12). TS mu-
tants were screened at a semipermissive tem-
perature where cells were viable but partially
compromised for gene function and associated
with a reduced growth rate (8). We also con-
structed a set of essential gene query strains carry-
ing decreased abundance of mRNA (DAmP)
alleles, which can lead to reduced transcript
levels (13); however, only a fraction of DAmP
alleles (25%) compromised gene function enough
to affect cellular fitness (>5% fitness defect) and,
consequently, most DAmP alleles exhibited fewer
interactions compared with TS alleles of essen-
tial genes (fig. S1). Thus, TS alleles mediated the
majority of the essential gene genetic interac-
tions in our network, and the analyses described
exclude DAmP alleles, unless otherwise noted.
We constructed three different genetic inter-

action maps. First, the collection of nonessen-
tial deletion mutant query strains was screened
against the nonessential deletion mutant array
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INTRODUCTION: Genetic interactions occur
when mutations in two or more genes com-
bine to generate an unexpected phenotype. An
extreme negative or synthetic lethal genetic
interaction occurs when two mutations, neither
lethal individually, combine to cause cell death.
Conversely, positive genetic interactions occur
when two mutations produce a phenotype that
is less severe than expected. Genetic interactions
identify functional relationships between genes
and can be harnessed for biological discovery
and therapeutic target identification. They may
also explain a considerable component of the
undiscovered genetics associated with human

diseases. Here, we describe construction and
analysis of a comprehensive genetic interac-
tion network for a eukaryotic cell.

RATIONALE: Genome sequencing projects are
providing an unprecedented view of genetic
variation. However, our ability to interpret ge-
netic information to predict inherited pheno-
types remains limited, in large part due to the
extensive buffering of genomes, making most
individual eukaryotic genes dispensable for
life. To explore the extent to which genetic in-
teractions reveal cellular function and contrib-
ute to complex phenotypes, and to discover the

general principles of genetic networks, we used
automated yeast genetics to construct a global
genetic interaction network.

RESULTS: We tested most of the ~6000 genes
in the yeastSaccharomyces cerevisiae for all possible
pairwise genetic interactions, identifying nearly
1 million interactions, including ~550,000 negative
and ~350,000 positive interactions, spanning

~90% of all yeast genes. Es-
sential genes were network
hubs, displaying five times
as many interactions as
nonessential genes. The set
of genetic interactions or
the genetic interaction pro-

file for a gene provides a quantitative mea-
sure of function, and a global network based
on genetic interaction profile similarity re-
vealed a hierarchy of modules reflecting the
functional architecture of a cell. Negative in-
teractions connected functionally related genes,
mapped core bioprocesses, and identified pleio-
tropic genes, whereas positive interactions often
mapped general regulatory connections asso-
ciated with defects in cell cycle progression or
cellular proteostasis. Importantly, the global
network illustrates how coherent sets of nega-
tive or positive genetic interactions connect
protein complex and pathways to map a func-
tional wiring diagram of the cell.

CONCLUSION: A global genetic interaction
network highlights the functional organization
of a cell and provides a resource for predicting
gene and pathway function. This network em-
phasizes the prevalence of genetic interactions
and their potential to compound phenotypes
associated with single mutations. Negative ge-
netic interactions tend to connect functionally

related genes and thus may be
predicted using alternative func-
tional information. Although less
functionally informative, positive
interactions may provide insights
into general mechanisms of ge-
netic suppression or resiliency.
We anticipate that the ordered
topology of the global genetic net-
work, in which genetic interac-
tions connect coherently within
and between protein complexes
and pathways, may be exploited
to decipher genotype-to-phenotype
relationships.▪
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A global network of genetic interaction profile similarities. (Left) Genes with similar genetic interaction
profiles are connected in a global network, such that genes exhibiting more similar profiles are located
closer to each other, whereas genes with less similar profiles are positioned farther apart. (Right) Spatial
analysis of functional enrichment was used to identify and color network regions enriched for similar Gene
Ontology bioprocess terms.
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lethal individually, combine to cause cell death.
Conversely, positive genetic interactions occur
when two mutations produce a phenotype that
is less severe than expected. Genetic interactions
identify functional relationships between genes
and can be harnessed for biological discovery
and therapeutic target identification. They may
also explain a considerable component of the
undiscovered genetics associated with human

diseases. Here, we describe construction and
analysis of a comprehensive genetic interac-
tion network for a eukaryotic cell.

RATIONALE: Genome sequencing projects are
providing an unprecedented view of genetic
variation. However, our ability to interpret ge-
netic information to predict inherited pheno-
types remains limited, in large part due to the
extensive buffering of genomes, making most
individual eukaryotic genes dispensable for
life. To explore the extent to which genetic in-
teractions reveal cellular function and contrib-
ute to complex phenotypes, and to discover the

general principles of genetic networks, we used
automated yeast genetics to construct a global
genetic interaction network.

RESULTS: We tested most of the ~6000 genes
in the yeastSaccharomyces cerevisiae for all possible
pairwise genetic interactions, identifying nearly
1 million interactions, including ~550,000 negative
and ~350,000 positive interactions, spanning

~90% of all yeast genes. Es-
sential genes were network
hubs, displaying five times
as many interactions as
nonessential genes. The set
of genetic interactions or
the genetic interaction pro-

file for a gene provides a quantitative mea-
sure of function, and a global network based
on genetic interaction profile similarity re-
vealed a hierarchy of modules reflecting the
functional architecture of a cell. Negative in-
teractions connected functionally related genes,
mapped core bioprocesses, and identified pleio-
tropic genes, whereas positive interactions often
mapped general regulatory connections asso-
ciated with defects in cell cycle progression or
cellular proteostasis. Importantly, the global
network illustrates how coherent sets of nega-
tive or positive genetic interactions connect
protein complex and pathways to map a func-
tional wiring diagram of the cell.

CONCLUSION: A global genetic interaction
network highlights the functional organization
of a cell and provides a resource for predicting
gene and pathway function. This network em-
phasizes the prevalence of genetic interactions
and their potential to compound phenotypes
associated with single mutations. Negative ge-
netic interactions tend to connect functionally

related genes and thus may be
predicted using alternative func-
tional information. Although less
functionally informative, positive
interactions may provide insights
into general mechanisms of ge-
netic suppression or resiliency.
We anticipate that the ordered
topology of the global genetic net-
work, in which genetic interac-
tions connect coherently within
and between protein complexes
and pathways, may be exploited
to decipher genotype-to-phenotype
relationships.▪
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A global network of genetic interaction profile similarities. (Left) Genes with similar genetic interaction
profiles are connected in a global network, such that genes exhibiting more similar profiles are located
closer to each other, whereas genes with less similar profiles are positioned farther apart. (Right) Spatial
analysis of functional enrichment was used to identify and color network regions enriched for similar Gene
Ontology bioprocess terms.
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A major challenge of contemporary biology is to 
understand how naturally occurring variation in DNA 
sequences causes phenotypic variation in quantitative 
traits. Efforts to chart the genotype–phenotype map for 
quantitative traits using both linkage and association 
study designs have mainly focused on estimating addi-
tive effects of single loci (that is, the main effect of the 
polymorphic locus averaged over all other genotypes). 
However, quantitative variation in phenotypes must 
result, in part, from multifactorial genetic perturbation 
of highly dynamic, interconnected and nonlinear devel-
opmental, neural, transcriptional, metabolic and bio-
chemical networks1. Thus, epistasis (that is, nonlinear 
interactions between segregating loci) is a biologically 
plausible feature of the genetic architecture of quantita-
tive traits. Deriving genetic interaction networks from 
epistatic interactions between loci will improve our 
understanding of biological systems that give rise to 
variation in quantitative traits2, as well as of mechanisms 
that underlie genetic homeostasis3,4 and speciation5,6. 
Knowledge of interacting loci will improve predictions 
of individual disease risk in humans, response to natural 
selection in the wild, and artificial selection and inbreed-
ing depression (and its converse, heterosis) in agricultural 
animal and crop species.

Mapping epistatic interactions is challenging exp-
erimentally, statistically and computationally. The experi-
mental challenge is the large sample sizes that are required 

both to detect significant interactions and to sample the 
landscape of possible genetic interactions. The statistical 
challenge is the severe penalty that is incurred for testing 
multiple hypotheses. The computational challenge is the 
large number of tests that must be evaluated. Genetically 
tractable model organisms afford the opportunity to use 
experimental designs that incorporate both new muta-
tions and segregating variants to detect epistasis, and 
many recent studies in model organisms have highlighted 
the importance of epistasis in the genetic architecture of 
quantitative traits. In this Review, I describe the quanti-
tative genetics of epistasis and the reasons that the role 
of epistasis has been controversial. I then review experi-
mental methods to detect epistasis in yeast, Drosophila 
melanogaster, mice, Arabidopsis thaliana and maize, and 
summarize empirical results showing that epistasis is 
pervasive. I discuss the implications of pervasive epista-
sis in model organisms for evolutionary models of the 
maintenance of quantitative genetic variation and specia-
tion, and for both animal and plant breeding. Given that 
epistasis is pervasive in model organisms, it is also likely 
to be a hallmark of the genetic architecture of human 
complex traits. I discuss how underlying epistasis can 
give rise to the small additive effects, missing heritability 
and the lack of replication that are typically observed in 
human genome-wide association studies. I do not dis-
cuss statistical and computational methods for assessing 
epistasis, as these have been reviewed previously7,8.
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Main effect
The effect of a variable 
averaged over all other 
variables; also known as 
marginal effect.

Heterosis
The phenomenon whereby the 
mean value of a quantitative 
trait in the F1 progeny of two 
inbred lines exceeds, in the 
direction of increased fitness, 
either the mean value of  
the parental lines (that is, 
mid-parent heterosis) or the 
mean value of the best parent 
(that is, high parent heterosis); 
also known as hybrid vigour.

Epistasis and quantitative traits: 
using model organisms to study 
gene–gene interactions
Trudy F. C. Mackay

Abstract | The role of epistasis in the genetic architecture of quantitative traits is 
controversial, despite the biological plausibility that nonlinear molecular interactions 
underpin the genotype–phenotype map. This controversy arises because most genetic 
variation for quantitative traits is additive. However, additive variance is consistent with 
pervasive epistasis. In this Review, I discuss experimental designs to detect the contribution 
of epistasis to quantitative trait phenotypes in model organisms. These studies indicate 
that epistasis is common, and that additivity can be an emergent property of underlying 
genetic interaction networks. Epistasis causes hidden quantitative genetic variation in 
natural populations and could be responsible for the small additive effects, missing 
heritability and the lack of replication that are typically observed for human complex traits.
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Only a few studies so far have analysed QTL-mapping 
populations to map, either by linkage or by association, 
loci that interact with focal mutations72,74,75,81–83. Some stud-
ies have used candidate gene association analyses to test 
whether the mutant allele interacts with naturally occur-
ring alleles at the mutant locus75 or with naturally occurring  
variants at a known interacting locus74. Others carried  
out unbiased genome scans in a QTL-mapping popula-
tion72,81–83, which typically uncovered unlinked interacting  
loci that do not have significant main effects.

Implications of pervasive epistasis
The studies reviewed here indicate that epistasis is a com-
mon feature of the genetic architecture of quantitative 
traits in model organisms. By extension, the same is likely 
to be true for quantitative traits in other organisms in 
which gene–gene interactions are more difficult to detect, 
including humans. The epistatic interactions that have 
been detected define previously uncharacterized, highly 

interconnected genetic networks that are enriched for bio-
logically plausible gene ontology categories, and metabolic 
and cellular pathways. Analyses of epistasis reveal that 
much quantitative genetic variation is hidden and is not 
apparent from analyses of main effects of causal variants, 
and that additivity is an emergent property of underlying 
epistatic networks. Furthermore, several types of obser-
vations suggest that natural populations have evolved 
suppressing epistatic interactions as homeostatic (that is, 
canalizing) mechanisms. These observations include less-
than-additive interactions between QTLs; cryptic genetic 
variation for invariant phenotypes in natural populations 
that can only be observed in the presence of a decana-
lizing mutation; and naturally segregating variation that 
generally suppresses the effects of induced mutations for 
quantitative traits.

This realization is paradigm shifting. Rather than 
perceiving phenotypic variation for quantitative traits in 
natural populations as highly variable, it may be more 

Figure 5 | Epistasis between naturally occurring 
variation and mutations in D. melanogaster. A graphical 

representation shows genotypes of i homozygous 

Drosophila melanogaster Genetic Reference Panel (DGRP) 

lines (DGRP_i), in which C1, C2 and C3 represent the three 

major chromosomes (part a). Co-isogenic C2 chromosomes 

that contain either a wild-type allele (wt) or a mutant allele 

(M; red star) of a focal gene that affects a quantitative trait 

have been introgressed into each DGRP line. The 

quantitative trait is measured for all pairs of wild-type and 

mutant DGRP introgression lines. The difference in 

phenotype between the wild-type and mutant alleles in 

the background on which the mutant was generated is 2a. 

If there are only additive effects on the phenotype, then 

the expectation is that the effect of the mutation will  

be the same on each DGRP line background, and the 

expected phenotype of the ith DGRP line with the mutant 

C2 allele is DGRP_i wt + 2a. If this is not the case, then the 

difference between the expected and the observed 

phenotypes is due to epistasis. Estimates of epistatic 

interactions (I) for ten mutations that affect startle 

response in 20 DGRP backgrounds79 are shown (part b). 

The interaction effects vary among mutations and DGRP 

lines. These effects are large and predominantly positive; 

that is, naturally occurring variation suppresses the effects 

of the mutations. 
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on growth rate revealed two epistatically interacting 
QTLs that affect growth rate, for one of which the effect 
on growth rate was in opposite directions in the differ-
ent genetic backgrounds55. Second, one can carry out 
transformation and allelic replacement to prove that 
variants are causal, as well as to engineer all possible 
combinations of causal variants to investigate epistasis 
at nucleotide resolution. These approaches were used  
in D. melanogaster to show that each of three domains in  
the Alcohol dehydrogenase (Adh) gene, as well as an 
intragenic epistatic interaction, contributed to the  
difference in Adh protein levels between the Fast and 
Slow electrophoretic alleles59. Similarly, in S. cerevisiae, 
strong epistasis for causal variants that affect sporulation  
efficiency43,44 was revealed.

A powerful QTL mapping design is to introgress 
genomic regions from one strain into the genetic back-
ground of another. This can be done either at the level 
of entire chromosomes to create a panel of chromo-
some substitution strains60 (FIG. 3b) or for introgressions 
that tile across the genome of the donor line (FIG. 3c), 
as for genome-tagged mice61. A fairly small number of 
introgression lines can be used to map QTLs with high 
precision. Epistasis occurs if the sum of the effects of 
the introgressed fragments is significantly greater than, 
or significantly less than, the mean difference in phe-
notype between the two parental strains. In rodents,  
introgression designs detect more QTLs, as well as QTLs 

that have larger effects than classical mapping popula-
tions for a wide variety of blood chemistry, bone and 
behavioural traits. In addition, the sum of the effects of 
individual QTLs is several orders of magnitude greater 
than the difference in phenotype between the paren-
tal strains60–62. Similar results are found for aggressive 
behaviour in D. melanogaster63. These results indicate 
that the combined effects of individual introgressed 
regions in the genome of the donor line are less than 
additive. Less-than-additive effects of introgressed 
QTLs have also been demonstrated for several fruit 
quality traits in tomato64,65.

For different allele frequencies of interacting loci, epi-
static interactions lead to different main effects of each 
of the interacting loci (FIG. 2b). Thus, they also lead to a 
lack of replication of estimated QTL effects in popula-
tions in which allele frequencies of causal interacting loci 
differ66. In model organisms one can construct mapping 
populations that have different QTL allele frequencies to 
determine how often allelic effects vary; in this case, the 
lack of replication of QTL effects can identify potentially 
interacting loci. The D. melanogaster Genetic Reference 
Panel (DGRP) is a collection of ~200 sequenced inbred 
lines that are derived from a single population, which 
allows genome-wide association mapping for quantita-
tive traits using all polymorphic molecular variants67. 
Flyland is a large outbred advanced intercross popula-
tion that is derived from 40 DGRP lines68. In this popu-
lation, QTLs can be rapidly mapped by phenotyping 
large numbers of individual flies and by sequencing 
pools of individual flies from the phenotypic extremes 
of the distribution; QTLs have significant differences in 
allele frequencies between the two pools of sequenced 
flies68,69. None of the QTLs that were detected in the 
DGRP for each of three quantitative traits were repli-
cated in extreme QTL mapping in the Flyland popula-
tion. However, 50–60% of the QTLs that were detected 
for the three traits in either population were involved 
in at least one epistatic interaction, and these interac-
tions perturbed common, biologically plausible and 
highly connected genetic networks68. Although these 
analyses indicate pervasive epistasis, the challenge 
remains to determine which of the statistically predicted  
interactions are biologically important.

Epistasis between mutations and QTLs
Analyses of epistasis between induced mutations do not 
scale well to large numbers of mutations but have the 
advantage that the interacting partners are specified. 
Analyses of epistasis between QTLs have the advantage 
that interactions among large numbers of polymor-
phisms and genes can be evaluated; however, owing to 
the severe multiple testing penalty, there will be large 
numbers of false-positive associations among the top 
interactions for which there is the highest level of statis-
tical support. An alternative strategy is to carry out one-
dimensional screens that evaluate the phenotypic effects 
of a known mutation in different genetic backgrounds. 
Although these designs have not yet been implemented 
on a large scale, many studies indicate that this will be 
a powerful approach.

Trait Observed Expected

h2 H2 H2 = 2h2/(1+h2)

Copulation latency 0.07 0.25 0.13

Startle response 0.16 0.58 0.28

Aggressive behaviour 0.09 0.78 0.17

Ethanol knock-down time 0.08 0.24 0.15

Box 2 | Evidence for epistasis from narrow- and broad-sense heritability

The response to a single generation of artificial selection for a quantitative trait is 
given by the breeder’s equation: R = h2S. R is the difference between the mean of the 
parental generation and the mean of the offspring generation. h2 is the narrow-sense 
heritability: h2 = (V

A
 + ½V

AA
)/V

P
, where V

A
 is the additive genetic variance, and V

AA
 is the 

additive-by-additive genetic variance, ignoring higher order epistatic interactions for 
simplicity. V

P
 is the phenotypic variance: V

P
 = V

A
 + V

AA
 + V

E
, where V

E
 is the 

environmental variance. The selection differential (S) is the difference between the 
mean of the parental population and the mean of the selected group10. 

The narrow-sense heritability is thus h2 = R/S. If selection is carried out over several 
generations, the narrow-sense heritability can be estimated from the regression of the 
cumulated response (ΣR) on the cumulated selection differential (ΣS); that is, h2 = ΣR/ΣS.  
By contrast, broad-sense heritabilities that are determined from variation among 
completely homozygous inbred lines, ignoring higher order additive-by-additive 
epistatic interactions, are H2 = (2V

A
 + 4V

AA
)/V

P
, where V

P
 = 2V

A
 + 4V

AA
 + V

E
 (REF. 100). 

Note that in this scenario there is no dominance variance and no epistatic interaction 
variance terms that involve dominance, as there are no heterozygotes. If all variation 
is additive (that is, V

AA
 = 0), then H2 among inbred lines is related to h2 from artificial 

selection from the outbred populations from which the inbred lines were derived: 
H2 = 2h2/(1 + h2)101. h2and H2 values for Drosophila melanogaster behavioural traits are 
given in the table102–106. In all cases H2 values are greater than those expected from 
strictly additive variance, which implies that epistatic variance contributes to the 
genetic architecture of these traits.
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Even	simple	studies	have	more	than		
linear	effects	in	them	...	Example	I	



Genome-Wide Search for Linkage of Bipolar
Affective Disorders in a Very Large Pedigree
Derived From a Homogeneous Population in
Quebec Points to a Locus of Major Effect on
Chromosome 12q23-q24

J. Morissette,1 A. Villeneuve,2 L. Bordeleau,1 D. Rochette,3 C. Laberge,1 B. Gagné,1 C. Laprise,1
G. Bouchard,4 M. Plante,1 L. Gobeil,1 E. Shink,1 J. Weissenbach,5 and N. Barden1*
1Neuroscience, CHUL Research Center and Laval University, Québec, Canada
2Clinique Roy-Rousseau, Québec, Canada
3Complexe Hospitalier de la Sagamie, Chicoutimi, Québec, Canada
4Université du Québec à Chicoutimi, Chicoutimi, Québec, Canada
5Genoscope, Evry, France

We completed a genome-wide scan for sus-
ceptibility loci for bipolar affective disor-
ders in families derived from a rather homo-
geneous population in the Province of Qué-
bec. The genetic homogeneity of this
population stems from the migration of
founding families into this relatively iso-
lated area of Québec in the 1830s. A possible
founder effect, combined with a prevalence
of very large families, makes this population
ideal for linkage studies. Genealogies for
probands can be readily constructed from a
population database of acts of baptism and
marriage from the early 1830s up to the
present time (the BALSAC register). We
chose probands with a DSM III diagnosis of
bipolar affective disorder and who may be
grouped within large families having genea-
logical origins with the founding population
of the Saguenay-Lac-St-Jean area. Living
members (n ∼120) of a very large pedigree
were interviewed using the Structured
Clinical Interview for DSM III (SCID I),
SCID II, and with a family history question-
naire. A diagnostic panel evaluated multi-
source information (interview, medical re-
cords, family history) and pronounced best-
estimate consensus diagnoses on all family

members. Linkage, SimAPM, SimIBD, and
sib-pair analyses have been performed with
332 microsatellite probes covering the en-
tire genome at an average spacing of 11 cM.
GENEHUNTER and haplotype analyses
were performed on regions of interest.
Analysis of a second large pedigree in the
same regions of interest permitted confir-
mation of presumed linkages found in the
region of chromosome 12q23-q24. Am. J.
Med. Genet. (Neuropsychiatr. Genet.) 88:
567–587, 1999. © 1999 Wiley-Liss, Inc.

KEY WORDS: manic depression; suscepti-
bility gene; linkage analysis

INTRODUCTION

The term “affective disorder” groups together a num-
ber of clinical conditions characterized by disturbance
of mood. Affective disorders are estimated to disrupt
the lives of up to 15% of the population at least once
during their lifetimes and may be the most destructive
group of mental illnesses in terms of prevalence, mor-
tality, economic cost, and impact on families. The dis-
tinction in the Diagnostic and Statistical Manual of
Mental Disorders (DSM-III-R, DSM-IV) of bipolar dis-
orders (in which mania has occurred at some time) is
perhaps the most useful classification. The bipolar
group of patients is undoubtedly the subgroup of affec-
tive disorders that can be diagnosed with the most cer-
tainty, and is the subgroup for which the strongest evi-
dence for familial disposition is available.

Twin, adoption, and family studies point to the ines-
capable conclusion of a genetic factor in both bipolar
and unipolar affective disorders. While between 65%
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A genome-wide scan points to a susceptibility locus
for bipolar disorder on chromosome 12
E Shink1, J Morissette2, R Sherrington3 and N Barden1

1Neuroscience, CHUL Research Centre and Laval University, CHUQ Pavillon CHUL, Ste-Foy, Québec, Canada;
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Our previous results pointed to a putative gene for susceptibility to bipolar affective disorder
located on the chromosomal region 12q23–q24 that segregated in the Saguenay-Lac-St-Jean
population of Quebec. We report here results from a second genome-wide scan based on the
analysis of 380 polymorphic microsatellite markers. For the purpose of this analysis, an
additional 18 families were recruited from the Saguenay-Lac-St-Jean region and pooled to our
previous sample to improve its statistical power, giving a total of 394 sampled individuals. This
work confirms the presence of a susceptibility locus for affective disorder on chromosome
12q24 with parametric LOD score value of 3.35 at D12S378 when pedigrees were broken into
nuclear families and analysed under a recessive segregation model. This result was supported
by neighbouring markers and by a LOD score value of 5.05 at D12S378 under model-free
analysis. Other regions of lower interest were indicated on chromosomes 2, 5, 7, 9, 10, 17
and 20.
Molecular Psychiatry (2005) 10, 545–552. doi:10.1038/sj.mp.4001601
Published online 19 October 2004

Keywords: chromosome 12; complex disease; genome scan; linkage analysis; manic depres-
sion

Bipolar disorder (also called manic depressive dis-
order) is a severe neuropsychiatric illness character-
ized by the occurrence of elevated mood (mania,
hypomania) and depressive states. Lifetime preva-
lence for this disease was estimated from 0.4 to 1.6%;
moreover, 15% of affected individuals commit sui-
cide.1 Twin, adoption and family studies have
supported the importance of genetic factors in the
predisposition to bipolar disorder but its aetiology
remains unknown. Craddock and Jones2 have re-
viewed proposed inheritance models. Delayed age of
onset, imprecise definition of phenotype and oligo-
genic inheritance are all factors in bipolar disorder
that complicate and reduce the power of linkage
analysis. Until now, no chromosomal region has
universal agreement for the presence of a vulner-
ability gene. Such results may be explained by the
large sample size needed to replicate initial linkage
finding for an oligogenic trait3 and by the variability
in location estimate, which may shift over substantial
distances from the true disease locus.4,5 Despite these
difficulties, some regions of interest were established
such as 4p16,6–10 12q23–q24,11–20 13q32–q33,9,21–24

18p11,25–27 18q21–q23,28–30 21q2231–34 and Xq26.35,36

In order to reduce genetic heterogeneity in bipolar
disorder, research groups have concentrated on iso-
lated populations. Escamilla37 reviews such studies
performed on pedigrees sampled from Finland, Ice-
land, the Central Valley of Costa Rica, the Old Order
Amish, Quebec and Scotland. Our previous results,
based on a large kindred (called VL) sampled from the
rather homogeneous population of the Saguenay-Lac-
St-Jean region of Eastern Quebec, pointed to a
putative gene for bipolar affective disorder located
on the long arm of chromosome 12.16 Particularly, we
reported two nonparametric multipoint peaks in
genomic regions 12q21.33 and 12q24.23–qter. This
result was supported by the analysis of an additional
pedigree (called BM) coming from the same popula-
tion and genotyped with chromosome 12 markers.
Considering both families, a maximum parametric
LOD score value of 2.87 was reported at D12S78 when
pedigrees were broken into nuclear families and
analysed under a recessive segregation model. How-
ever, a follow-up study did not support the presence
of an expected founder effect for bipolar disorder in
this population.38

We now report results from a second genome-wide
scan based on the analysis of 380 polymorphic
microsatellite markers, 233 of which differed from
markers previously used.16 An additional 18 families
were recruited from the Saguenay-Lac-St-Jean region
and added to the BM and VL families to increase our
statistical power to detect linkage and leading to a
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DISCUSSION

In this article, we report evidence that SNP rs2230912 in the
P2RX7 gene is associated with MDD. This functional poly-
morphism rs2230912 is located in exon 13 of the P2RX7
gene, resulting in a change of the amino acid glutamine to
arginine at position 460 (Gln460Arg). Gln460Arg is posi-
tioned in the long intracellular C-terminal domain. This
domain is unique among P2X receptors and is thought to be
responsible for functions that are different from those
observed in other ion channels, including alterations in cell
morphology (29), intracellular signaling and cytolysis/apopto-
sis (30). In this region, several loss-of-function polymorph-
isms have been reported (31–33). The Gln460Arg residue
has been described to lead to a functional decrease, albeit
minor, when measuring Ca2þ influx in peripheral blood
lymphocytes of patients affected with chronic lymphocytic
leukaemia and in transfected recombinant human embryo-
nic kidney cells (34). Owing to its position in the intracellular
domain (35) and the fact that Gln460Arg residue is conserved
in mammals, this residue is likely to be involved in P2RX7
dimerization as well as in other protein–protein interactions
having effects upon P2RX7-mediated signalling.

Although so far little is known about the functional impli-
cations of the Gln460Arg variant, P2RX7 receptors might
well play a pivotal role in antidepressant action and the caus-
ality of mood disorders through their role in neuroprotection
(36) and in neuroinflammatory responses (37) as well as
through their influence on neurotransmission in the hippo-
campus (38).

In our study, we noted a nominally significant deviation
from the Hardy–Weinberg (DHW) equilibrium for the

associated SNP rs2230912. Because laboratory error is one
of the most common reasons for the DHW, we verified our
genotyping by pyrosequencing as well as by direct sequencing
and found no discrepancies between results from different
genotyping methods. This deviation is also unlikely to be
due to hidden population structure as our study was restricted
to Caucasians with 92% of people originating from Germany.
Formal assessment of population structure using STRUCTURE
(http://pritch.bsd.uchicago.edu/software.html) gave no evidence
of population admixture (data not shown).

Apart from genotyping errors, the DHW in a case–control
study may also occur as a consequence of a positive associ-
ation. Wittke-Thompson et al. (28) in their theoretical inves-
tigation showed that under certain conditions, the DHW in
controls is to be expected in association studies. In that
case, the direction of differences between expected and
observed genotype frequencies in cases and controls should
be opposite, as was the case in our sample. Of course, an
alternative explanation for the DHW in our controls sample
could simply be chance, especially keeping in mind that
after a correction for multiple testing, the DHW appears no
longer significant.

In our sample, a heterozygote disadvantage model was the
most suitable mode of inheritance, possibly being a reflection
of P2RX7 receptors having an oligomeric structure in the
plasma membrane based on complexes of identical subunits
(39,40). The same variant we found associated, rs2230912,
was also the most highly associated SNP in Canadian bipolar
families with an over-transmission of the (minor) G-allele in
the affected offspring (P ¼ 0.000708) (14). In our sample, we
observed the same direction of association, with the G-allele
being more frequent in patients. SNPs rs3817190 (exon 1 in

Figure 1. Association of investigated SNPs with MDD. Chromosomal pos-
itions are given on the x-axis and 2log 10 (P-values) are on the y-axis. The
dotted and dashed lines represent the permutation-based 5% type I error rate
for the three SNPs implicated in BP in the SLSJ sample (14) and the 17
remaining SNPs, respectively.

Figure 2. Distribution of genotypes of SNP rs2230912 in cases and controls.
The odds ratio for a dominant model (genotypes AG and GG versus AA) was
equal to 1.30 (CI ¼ 1.07–1.59; P ¼ 0.008068) and for a heterozygote dis-
advantage model (AG versus AA and GG) 1.40 (CI ¼ 1.14–1.72;
P ¼ 0.0009938).
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P2RX7, a gene coding for a purinergic
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The P2RX7 gene is located within a region on chromosome 12q24.31 that has been identified as a susceptibility
locus for affective disorders by linkage and association studies. P2RX7 is a purinergic ATP-binding calcium
channel expressed in neurons as well as in microglial cells in various brain regions. We investigated 29
single nucleotide polymorphisms (SNPs) within the P2RX7 gene and adjacent genes in a sample of 1000
German Caucasian patients suffering from recurrent major depressive disorder (MDD). These were con-
trasted with diagnosed healthy Caucasian controls from the same population (n 5 1029). A non-synonymous
coding SNP in the P2RX7 gene (rs2230912), previously found to be associated with bipolar disorder, was sig-
nificantly associated (P 5 0.0019) with MDD. This polymorphism results in an amino acid exchange in the
C-terminal cytosolic domain of the P2RX7 channel protein, suggesting that the observed P2RX7 polymorph-
ism might play a causal role in the development of depression.

INTRODUCTION

Major depressive disorder (MDD) and bipolar disorder (BP)
are common psychiatric diseases with lifetime prevalence
rates of 16–17% for MDD (1,2) and 1–3.3% for BP (3,4).
Although both, MDD and BP patients, suffer from recurrent
episodes with symptoms such as sad mood, loss of interest
and energy, cognitive impairment, insomnia and loss of appe-
tite, bipolar patients in addition encounter episodes of mania
(bipolar I, BPI) or hypomania (bipolar II, BPII), characterized
by excessive elation, increased energy, decreased need for
sleep, increased sexual desire and grandiose notions. Both
BP and MDD have a high heritability, with 83–93% for BP
(5,6) and 34–75% for MDD (7–9).

Genome-wide linkage analyses with BP patients yielded
several regions of interest (10). Two genome-wide scans on
pedigrees from the Saguenay-Lac-St-Jean (SLSJ) region of

Quebec demonstrated the presence of a susceptibility locus
on 12q24.31 administering both parametric and non-
parametric analyses and using a broad affection status model
(ASMII) that includes BPI, BPII and recurrent MDD. Four
consecutive markers gave maximum sibpair LOD scores
close to or above 5, with empirical P-values of ,0.0001
(11,12).

Linkage analysis using tightly spaced microsatellite markers
gave a LOD score .3.7 (P-value 0.0001) at marker NBG6
under ASMII, and a case–control association analysis with
the same marker showed positive allelic association with BP
(P-value ¼ 0.008) (13). As this marker is located within
intron 9 of the P2RX7 gene, coding for a member of the pur-
inergic ligand-gated ion channels of the P2X family, 24 single
nucleotide polymorphisms (SNPs) in P2RX7 and the neigh-
bouring genes, e.g. P2RX4 and CAMKK2, were genotyped in
a bipolar case–control sample and 12 SNPs in the pedigrees

# 2006 The Author(s)
This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/
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CAMKK2) as well as rs1718119 (exon 11 in P2RX7) and
rs11065501 (30-UTR in P2RX4) were associated in Canadian
bipolar families and in the case–control study, respectively,
but showed no association in our MDD sample. These findings
could reflect the clinical observation of MDD and BP being two
different disorders that share some causal factors, with the var-
iances in common conveying susceptibility to both disorders.
Polymorphisms in other genes are likely to represent the discri-
minating factors, determining the ultimate clinical phenotype,
unipolar or bipolar. This discrepancy might also be due to dif-
fering patterns of LD in the more isolated SLSJ when compared
with the non-isolated Munich population. LD seems to have a
longer reach in the SLSJ population (14) when compared
with the Munich population, which is in keeping with general
knowledge about isolated versus non-isolated populations (41).

In addition, epidemiological data indicate that there is a con-
stant diagnostic conversion from MDD to BP of 1.25% per year
throughout the lifespan (18). Accordingly, in a sample of MDD
patients, a substantial number of hidden bipolar cases are to be
expected. However, when calculating odds ratios stratified by
age, we observed no linear influence of age or age at onset
on the association, which would be expected under the hypo-
thesis that the association in the sample of MDD patients

would be due to the hidden bipolar cases (data not shown).
Therefore, the data suggest that the Gln460Arg variant might
be a susceptibility factor for both disorders.

Our data, in combination with the association data in BP
patients, suggest the implication of P2RX7 in affective dis-
orders and are consistent with the possibility that various
mood disorders share some genetic commonalities. Being
localized in the plasma membrane, P2RX7 is a potential
drug target and thus represents an example for a possible
pharmacological drug discovery strategy emerging from an
unbiased genetic approach.

MATERIALS AND METHODS

Sample description

One thousand patients (326 males and 674 females) with
recurrent unipolar depression were recruited from in- and out-
patients at the Max Planck Institute of Psychiatry in Munich
and psychiatric hospitals in Augsburg and Ingolstadt, located
close to Munich. Each hospital contributed one-third of the
patients. Patients were diagnosed by WHO-certified raters
according to DSM-IV using the Schedule for Clinical

Figure 3. Linkage disequilibrium and block structure (D 0) of the region. SNPs lying within blocks are depicted in bold type.
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Abstract
The P2X7 receptor is a member of the P2X family of ligand-gated ion channels. A single-
nucleotide polymorphism leading to a glutamine (Gln) by arginine (Arg) substitution at
codon 460 of the purinergic P2X7 receptor (P2X7R) has been associated with mood disor-
ders. No change in function (loss or gain) has been described for this SNP so far. Here we
show that although the P2X7R-Gln460Arg variant per se is not compromised in its function,
co-expression of wild-type P2X7R with P2X7R-Gln460Arg impairs receptor function with
respect to calcium influx, channel currents and intracellular signaling in vitro. Moreover, co-
immunoprecipitation and FRET studies show that the P2X7R-Gln460Arg variant physically
interacts with P2X7R-WT. Specific silencing of either the normal or polymorphic variant
rescues the heterozygous loss of function phenotype and restores normal function. The
described loss of function due to co-expression, unique for mutations in the P2RX7 gene so
far, explains the mechanism by which the P2X7R-Gln460Arg variant affects the normal
function of the channel and may represent a mechanism of action for other mutations.

Introduction
The purinergic P2X7 receptor (P2X7R) is a member of the P2X family of ligand-gated ion
channels [1], which responds to ATP as the endogenous ligand [2]. Although its structure is
similar to other members of the P2X receptor family that have two transmembrane domains
and an extracellular loop as well as intracellular N- and C-termini, the P2X7R has a much
larger intracellular C-terminal domain, which may be responsible for the additional functions
of this receptor. P2X7R has been shown to form homomeric trimers and hexamers and might
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Fig 1. Co-expression of hP2X7R-Gln460Arg with hP2X7R-WT diminishes normal receptor function. (A) Increase of intracellular calcium of stably
transfected HEK293 cells was measured following BzATP application (50 μM) (repeated measures ANOVA, P < 0.01 hP2X7R-WT and hP2X7R-Gln460Arg
versus HEK293; n = 4). For each cell line, nine individual clones were analyzed (B) Left: representative whole-cell measurements out of four independent
experiments by whole-cell patch clamp analysis. Right: Quantification of inward currents elicited by BzATP (One-way ANOVA with Scheffé’s test, ns = non-
significant versus hP2X7R-WT; n = 4) (C) Increase of intracellular calcium of HEK293 cells stably transfected with hP2X7R-WT (9 clones) and stably double
transfected with hP2X7R-WT + hP2X7R-Gln460Arg (10 clones) was measured (repeated measures ANOVA, P < 0.01 hP2X7R-WT + Gln460Arg versus
hP2X7R-WT; n = 4). (D) Left: representative whole-cell measurements by whole-cell patch clamp analysis. Right: Quantification of inward currents elicited by
BzATP (One-way ANOVA with Scheffé’s test, *P < 0.05 versus hP2X7R-WT; n = 4) (E) BzATP (50 μM)-induced activation of p-ERK 1/2 in HEK293 cells
expressing P2X7R variants. Each value of pERK1/2 was normalized to total ERK1/2. Results are expressed as the percentage of maximum pERK1/2
obtained at 2 minutes of stimulation in hP2X7R-WT cells ± s.e.m. from 3 independent experiments. One-way ANOVA, * P < 0.05 versus hP2X7R-WT and
versus hP2X7R-Gln460Arg at the same time points. Bottom panels showWBs of pERK1/2 and total ERK1/2 from a representative experiment. (+): Fetal calf
serum 10% treatment for 10 min, positive control for p-ERK 1/2 activation. Inset: Quantification and representative example showingWB detection of
hP2X7R variants in parental HEK293 cells and analyzed stable clones.

doi:10.1371/journal.pone.0151862.g001
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onset was not normally distributed, rank-based inverse normal trans-
formation was applied. The HLA allele most strongly associated with
transformed age at onset was DRB1*15:01 (effect size, −0.21; P = 7.6 ×
10−6). When conducting a genome-wide analysis of transformed age
at onset in all 1519 patients, no variant passed the threshold for
genome-wide significance (fig. S3, A and B). The most strongly asso-
ciated SNP was rs4959027 (effect size, −0.20; P = 1.5 × 10−7; fig. S3,
C and D), which is in LD with DRB1*15:01 (r2 = 0.72). After condi-
tioning for DRB1*15:01 in the subset of cases with both age at onset
and imputed HLA alleles available, the P value of rs4959027 was in-
creased from 1.1 × 10−6 to 4.8 × 10−2. We conclude that our findings
for the MHC region are very well in line with previous studies and con-
centrated further analyses on associations with case/control status
outside this region.

Associations outside the MHC region
Variants at 15 loci outside the MHC region showed genome-wide sig-
nificance (Fig. 1, figs. S4 and S5, Table 3, and table S4). Ten of these
loci have already been established in previous large MS GWAS (3, 4, 6).
One more locus, DLEU1 (deleted in lymphocytic leukemia 1), was
only recently confirmed to be associated with MS in a candidate gene
study (21). The remaining four signals are thus novel candidates for
MS susceptibility loci. The lead variants at all 15 non-MHC loci showed
P < 5 × 10−6 in DE1 and lower P < 5 × 10−8 in the pooled analysis of
DE1 and DE2 and have thus replicated in DE2. We could not detect
any significant interaction among the 15 top non-MHC variants or
between them and SNP rs3104373 within the MHC region.

For validation of our findings, we compared our results to the largest
study on MS genetic susceptibility published to date (Fig. 2) (4). Of the
108 non-MHC variants showing genome-wide significant or suggestive
associations with MS in the published study, 104 variants were present
in our data and could be analyzed. All of them showed the same direction
of effect (P = 5 × 10−32, binomial sign test; CI, 0.97 to 1.00), 84 with
nominal (P < 0.05) and 10 with genome-wide significance (P < 5 × 10−8).
Fifty-eight of the variants had lower ORs and 35 had higher ORs in
our data than in the published data set (4). It was expected to observe
more signals with lower ORs than previously reported due to regression
toward the mean.

Table 2. Genome-wide significant HLA alleles. Alleles are in order of stepwise logistic regression. For each row, alleles from the rows above have
been used as covariates in the model. AF (allele frequency of controls in %) is calculated from a joint set of DE1 and DE2. ORs and P values are from
a fixed-effects pooled analysis of DE1 and DE2.

HLA allele AF OR (95% CI) P HLA alleles in LD (r2 > 0.9)

DRB1*15:01 14.8 2.85 (2.66–3.06) 1.03 × 10−191 DQB1*06:02

A*02:01 28.6 0.68 (0.64–0.73) 3.68 × 10−29

B*38:01 2.0 0.36 (0.27–0.49) 2.09 × 10−11

DRB1*13:03 1.5 1.96 (1.60–2.40) 6.42 × 10−11

DPB1*03:01 10.3 1.33 (1.22–1.46) 4.35 × 10−10

DRB1*03:01 12.2 1.29 (1.18–1.40) 1.85 × 10−8 DQA1*05:01, DQB1*02:01

DRB1*08:01 3.0 1.63 (1.39–1.91) 2.36 × 10−9 DQA1*04:01, DQB1*04:02
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Fig. 1. Genome-wide representation of MS associations in the pooled
analysis of German data sets. Manhattan plot showing strength of ev-
idence for association (P value). Each variant is shown as a dot, with alternating
shades of blue according to chromosome. Green dots represent established
MS-associated variants and their proxies, as listed by Sawcer et al. (3) (except
for rs2812197, which was not covered by that review). Top variants at the
15 non-MHC loci associated at the genome-wide significance threshold in
our study are shown as diamonds. Novel variants showing genome-wide
significance are plotted as red diamonds; their names are shown in bold
font. Variants in high LD (r2 ≥ 0.7) with these novel variants are shown as
red dots. Variants replicating in the Sardinian cohort are shown in red font.
MA, minor allele. The OR is relative to the MA. Gene names for known
loci are indicated as listed by Sawcer et al. (3). The plot is truncated at
−log10p = 16 for better visibility; all truncated variants map to the MHC
region. The lowest P value (rs3104373, *) was 1.3 × 10−234.
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Type MPIP GTP 
Effect p-value Effect p-value 

Total effect 0.197 0 0.111 1.5e-04 
Direct effect 0.127 1.9e-04 0.074 1.7e-02 
Causal mediation effect 0.070 3.7e-04 0.037 6.6e-03 
Proportion mediated 0.355 3.7e-04 0.332 6.6e-03 

S8  
Results were obtained using 1,000,000 simulations. The p-value for the total effect in 
MPIP is 0, as this number of simulations is not sufficient to estimate a p-value as low 
as 8.33×10-10 (table S7A). Note that the effects and p-values observed here differ 
from the ones shown in Table 4, as a lower number of samples contained both 
expression and methylation data than expression data alone. 
 
 
 
 
 
  

table . Causal mediation analysis.

a strong eQTLwith the gene SHMT1 inDE1 samples [false discovery rate
(FDR), 2.99 × 10−10; Table 4 and fig. S7, A to C]. This eQTLwas replicated
in two independent control data sets [MaxPlanck Institute of Psychiatry
(MPIP) data (25) and Grady Trauma Project (GTP) (26–28)] and in the
publicly available GTEx eQTL database (29) (Table 4).

To investigate how rs4925166 influences the expression of SHMT1, we
conducted an association analysis of the SNP with DNA methylation
levels in blood. DNAmethylation is an important epigenetic mechanism
for regulation of gene expression. We tested the association between
rs4925166 and DNA methylation levels at CpG sites in the two non-
MS data sets MPIP and GTP. Methylation levels at 157 CpG sites that
mapped to SHMT1 were examined for an association with genotype.
We observed eight significant (FDR <0.05) methylation QTLs (mQTLs)
between rs4925166 andCpGs in SHMT1within theMPIPdata set. Three
of these associations could be replicated in the GTP data set (table S6
and fig. S7, D and E).

We wondered whether the CpG site showing the strongest associ-
ation with rs4925166 (cg26763362) could fully explain the observed
association between the SNP and SHMT1 expression (causal direction:
rs4925166→cg26763362→SHMT1 expression) using mediation anal-
ysis (Table 4, tables S7 and S8, Fig. 3) (30). We observed partial me-
diation of the effect of rs4925166 on SHMT1 expression by DNA
methylation status of CpG site cg26763362. The association pattern
indicates that an additional factor influences the relationship between
the SNP, the CpG, and the gene expression (see the Supplementary
Materials). Thus, we conclude that the genotype of rs4925166 affects
the expression of SHMT1 in a complex fashion, partially involving
rs4925166-dependent DNA methylation.

Additional novel candidate loci associated with MS
Three loci showed genome-wide significance in the pooled analysis of
German data sets DE1 and DE2 but not in Sardinians (Table 3). The
strongest association, SNP rs4364506, was found on chromosome 6
and is located in an intron of the gene coding for the transcriptional
regulator L3MBTL3 [Lethal(3)malignant brain tumor–like protein 3;
fig. S5G). SNP rs2836425 on chromosome 21 constituted the second
strongest signal identified in Germans only. This variant maps to an
intron of the gene ERG, coding for a transcription factor (fig. S5P). The
third SNP rs34286592 is located in an intron of the geneMAZ on chro-
mosome 16, coding for the transcription factor MYC-associated zinc
finger protein (fig. S5N). It maps to binding sites for transcription
factors (fig. S8G).

When conditioning for the lead variants at the four newly identi-
fied MS-associated loci, no evidence for secondary signals was found.
Thus, the lead variants also constitute the most likely causal variants.
These variants all map to introns of genes. This makes a functional link
between each variant and the gene it is located in probable. To further
explore the functional connections between SNPs and genes, we con-
ducted an eQTL analysis of the 15 loci showing genome-wide signif-
icant associations. We thereby identified four cis-eQTLs with FDR
<0.05 in MS cases (table S5). In addition to the eQTL of rs4925166
and SHMT1 already described above, three more significant eQTLs
involved variants at two previously known MS susceptibility loci
and three transcripts of the genes MMEL1 and ANKRD55.

Fine-mapping of DLEU1
Three variants located on chromosome 13 (rs806321, rs9596270, and
rs806349), all intronic within the gene for the long noncoding RNA
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Fig. 3. Fine-mapping analysis results of locus rs4925166. (A) Regional
plot for the rs4925166/SHMT1 locus. Color of dots indicates LD with the
lead variant (rs4925166; pink). Gray dots represent signals with missing
r2 values. cM, centimorgan. (B) Mediation analysis results in MPIP/GTP
controls. Mediation effect: rs4925166→CpG cg26763362→SHMT1 expres-
sion. Direct effect: rs4925166→SHMT1 expression. Data have been
calculated using the R package mediation (30), except for total effect
(*), which was calculated by linear regression. Results were obtained
using 1 million simulations. Effects and P values shown here differ from
Table 5, as a lower number of samples contained both expression and
methylation data than expression data alone. (C) Relationship between
cg26763362 methylation, SHMT1 expression, and rs4925166 genotype in
MPIP controls.
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a strong eQTLwith the gene SHMT1 inDE1 samples [false discovery rate
(FDR), 2.99 × 10−10; Table 4 and fig. S7, A to C]. This eQTLwas replicated
in two independent control data sets [MaxPlanck Institute of Psychiatry
(MPIP) data (25) and Grady Trauma Project (GTP) (26–28)] and in the
publicly available GTEx eQTL database (29) (Table 4).

To investigate how rs4925166 influences the expression of SHMT1, we
conducted an association analysis of the SNP with DNA methylation
levels in blood. DNAmethylation is an important epigenetic mechanism
for regulation of gene expression. We tested the association between
rs4925166 and DNA methylation levels at CpG sites in the two non-
MS data sets MPIP and GTP. Methylation levels at 157 CpG sites that
mapped to SHMT1 were examined for an association with genotype.
We observed eight significant (FDR <0.05) methylation QTLs (mQTLs)
between rs4925166 andCpGs in SHMT1within theMPIPdata set. Three
of these associations could be replicated in the GTP data set (table S6
and fig. S7, D and E).

We wondered whether the CpG site showing the strongest associ-
ation with rs4925166 (cg26763362) could fully explain the observed
association between the SNP and SHMT1 expression (causal direction:
rs4925166→cg26763362→SHMT1 expression) using mediation anal-
ysis (Table 4, tables S7 and S8, Fig. 3) (30). We observed partial me-
diation of the effect of rs4925166 on SHMT1 expression by DNA
methylation status of CpG site cg26763362. The association pattern
indicates that an additional factor influences the relationship between
the SNP, the CpG, and the gene expression (see the Supplementary
Materials). Thus, we conclude that the genotype of rs4925166 affects
the expression of SHMT1 in a complex fashion, partially involving
rs4925166-dependent DNA methylation.

Additional novel candidate loci associated with MS
Three loci showed genome-wide significance in the pooled analysis of
German data sets DE1 and DE2 but not in Sardinians (Table 3). The
strongest association, SNP rs4364506, was found on chromosome 6
and is located in an intron of the gene coding for the transcriptional
regulator L3MBTL3 [Lethal(3)malignant brain tumor–like protein 3;
fig. S5G). SNP rs2836425 on chromosome 21 constituted the second
strongest signal identified in Germans only. This variant maps to an
intron of the gene ERG, coding for a transcription factor (fig. S5P). The
third SNP rs34286592 is located in an intron of the geneMAZ on chro-
mosome 16, coding for the transcription factor MYC-associated zinc
finger protein (fig. S5N). It maps to binding sites for transcription
factors (fig. S8G).

When conditioning for the lead variants at the four newly identi-
fied MS-associated loci, no evidence for secondary signals was found.
Thus, the lead variants also constitute the most likely causal variants.
These variants all map to introns of genes. This makes a functional link
between each variant and the gene it is located in probable. To further
explore the functional connections between SNPs and genes, we con-
ducted an eQTL analysis of the 15 loci showing genome-wide signif-
icant associations. We thereby identified four cis-eQTLs with FDR
<0.05 in MS cases (table S5). In addition to the eQTL of rs4925166
and SHMT1 already described above, three more significant eQTLs
involved variants at two previously known MS susceptibility loci
and three transcripts of the genes MMEL1 and ANKRD55.

Fine-mapping of DLEU1
Three variants located on chromosome 13 (rs806321, rs9596270, and
rs806349), all intronic within the gene for the long noncoding RNA
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Fig. 3. Fine-mapping analysis results of locus rs4925166. (A) Regional
plot for the rs4925166/SHMT1 locus. Color of dots indicates LD with the
lead variant (rs4925166; pink). Gray dots represent signals with missing
r2 values. cM, centimorgan. (B) Mediation analysis results in MPIP/GTP
controls. Mediation effect: rs4925166→CpG cg26763362→SHMT1 expres-
sion. Direct effect: rs4925166→SHMT1 expression. Data have been
calculated using the R package mediation (30), except for total effect
(*), which was calculated by linear regression. Results were obtained
using 1 million simulations. Effects and P values shown here differ from
Table 5, as a lower number of samples contained both expression and
methylation data than expression data alone. (C) Relationship between
cg26763362 methylation, SHMT1 expression, and rs4925166 genotype in
MPIP controls.
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G	 M	

E	
Analysis of Variance Table

Response: ILMN_1811933_ori
                      Df  Sum Sq Mean Sq F value    Pr(>F)    
cg26763362             1  2.5999 2.59995 28.1281 2.761e-07
rs4925166              1  1.7481 1.74806 18.9118 2.094e-05
cg26763362:rs4925166   1  0.4713 0.47129  5.0988   0.02492
Residuals            220 20.3352 0.09243                      



First	tries	at	analysing	non-lineariBes		
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Stats again .... 

Pearson correlation: 
Rho = -0.0015, P = 0.976 
 
 
 
Randomized determination coefficient 
RDC = 0.4445; P ~ 2.4e-11 
 
 
 
Analysis of Variance Table 
 
Response: RPS17_L 
                     Df Sum Sq Mean Sq F value    Pr(>F)     
AIF1      1  0.000  0.0001  0.0010    0.9747     
AIF12            1  5.442  5.4423 41.1463 4.433e-10 *** 
AIF13        1  0.045  0.0451  0.3407    0.5598     
Residuals           361 47.748  0.1323  
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Classic advice .. look at the data first 

Bi-variate	plots	of		
PSStotal	
vs	TPST1	(expression),	
TXNRD2	(methylaJon),	
and	their	interacJon	
term	
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RDC is 0.41 and significant … 
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Evaluation of removable statistical interaction for binary traits

Jaya M. Satagopan1 and Robert C. Elston2

1Department of Epidemiology and Biostatistics, Memorial Sloan-Kettering Cancer Center, New
York, NY, USA
2Department of Epidemiology and Biostatistics, Case Western Reserve University, Cleveland,
OH, USA

Abstract
This paper is concerned with evaluating whether an interaction between two sets of risk factors for
a binary trait is removable and fitting a parsimonious additive model using a suitable link function
to estimate the disease odds (on the natural logarithm scale) when an interaction is removable.
Statisticians define the term “interaction” as a departure from additivity in a linear model on a
specific scale on which the data are measured. Certain interactions may be eliminated via a
transformation of the outcome such that the relationship between the risk factors and the outcome
is additive on the transformed scale. Such interactions are known as removable interactions. We
develop a novel test statistic for detecting the presence a removable interaction in case-control
studies. We consider the Guerrero and Johnson family of transformations and show that this
family constitutes an appropriate link function for fitting an additive model when an interaction is
removable. We use simulation studies to examine the type I error and power of the proposed test
and to show that an additive model based on the Guerrero and Johnson link function leads to more
precise estimates of the disease odds parameters and a better fit when an interaction is removable.
The proposed test and use of the transformation are illustrated using case-control data from three
published studies. Finally, we indicate how one can check that, after transformation, no further
interaction is significant.

Keywords

Analysis of variance; curvature; independence; interaction effect; link function; main effect;
residuals; score statistic; Tukey’s test; transformation; unbalanced data

Introduction

There is a long-standing interest in the evaluation of interactions in genetic and
epidemiology studies. The ability to conduct candidate-gene and high-throughput
association studies has accelerated the efforts to examine gene-gene and gene-environment
interactions in relation to disease risk using a variety of statistical models (see [1 – 6] and
several other works reviewed in [7 – 9]). The interest in interactions is also stimulated by the
hope that significant interaction effects identified using statistical models can provide
insights into biological interactions that underpin the disease [7, 10]. This has also caused
some confusion regarding the very meaning of the term “interaction” and substantial
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Give	me	an	interacJon	and	I‘ll	transform	it	away	...		
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Predictive of higher-order interactions in lower-order 
analysis? 
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Can be used as a distance matrix in clustering 

Max Planck Institute 
of Psychiatry 

German Research Institute of Psychiatry

In Mehta et al, 2013, the two transcripts 
RPS17_L and AIF1 have weak linear correlation, 
ρ  =  –0.0015 (p = 0.976). In a polynomial 
regression of RPS17_L on the expression value 
of AIF1 the coefficient of AIF12 is significant (p = 
4.4×10–10), indicating a non-linear relationship. 
However, for the corresponding RDC of 0.44 
permutation yields p = 2.4×10–11.

Max Planck Institute 
of Psychiatry 

German Research Institute of Psychiatry

The RDC project has received funding from the European Union’s Seventh Framework Programme for research, technological development and demonstration under grant agreement no. 316861. 

Biological systems are rather complex, maintained by diverse interactions 
between proteins and factors, decoding the genetic and epigenetic 
information. On genotypes we started to study pairwise epistasis on a 
genome-wide level, polygenic risk scores are a more general approach to 
capture multi-SNP effects. Our first approach to detect such interactions 
utilises support vector machines with a radial basis function kernel in an 
application to MS treatment. 

We also observed nonlinear relationships in gene expression data, for 
example, the expression of two genes exhibits a nonlinear correlation in a 
PTSD study (Mehta et al, 2013) shown below. However, the popular methods 
for analysing genomic data are usually inherently linear and, therefore, 
incapable of capturing the non-linear relationships. This led us to study a 
nonlinear model RDC (Lopez-Paz et al, 2013), and to explore its application 
in the genomics. 

1 Predicting treatment response in MS patients from genotypic information using support vector machines (SVM)
Many patients react to interferon treatment 
with antibodies. It would, therefore be bene-
ficial to be able to predict this kind of 
treatment response beforehand. Earlier 
studies found single SNP effects that did not 
have sufficient power to make useful 
predictions. Unlike many other techniques, 
SVMs inherently take interactions between 
variables into account when using an 
appropriate kernel, e.g., Gaussian. Hence, we 
used this approach to identify genes where 
multiple SNPs show some kind of epistatic 
interaction to make more powerful forecasts.
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Figure 6.5.: Top 13 genes with higher performance than reference pruning. Red denoted SNPs indicate absolute outperformance of the extrapolated
reference curve, green marked SNPs exceed 99%, light blue marked SNPs 95% and dark blue colored SNPs indicate a performance over 90%
of the reference results.
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A new cohort is currently prepared to serve for validation and as a basis for a new model.

2

Application: RDC based clustering for gene expression data  
The clustering analysis aims to identify new classes of biological 
subtypes, or to identify the outliers which are distant from other 
samples. One important part of a clustering algorithm is the distance 
measure as it may give rise to different clusterings.

The agglomeration 
method: complete

We found that RDC-based distance led to a better performance of 
clustering than the classical Euclidean-based distance did in a multi-
tissues mouse expression data.

Digging deeper into omics: 
machine learning approaches in translational psychiatry

Statistical genetics group

The figures to the right 
show the SNP relevance 
profile for HLA-DRB6, a 
gene previously iden-
tified as possible candi-
date, genome-wide hot-
spots covering almost all 
chromosomes, and an 
early prediction result 
based on preliminary data. The color indicates 
the classification quality using cross-validation 
(green: good, red: wrong).

Nonlinearity: The application of Randomized Dependence Coefficient (RDC) in large-scale genomic data

Brain 

Muscle 

Adipose 

Liver 

3 Differential network analysis: Identifying FKBP5-affected gene interactions in immune-related signalling pathways

FKBP5 has been found to be less expressed in individuals with current post-traumatic stress disorder (Mehta et al, 2013). We considered the mechanism via 
which FKBP5 may in vivo exert effects on immune function in humans. For this purpose, we sought to examine the effect of FKBP5 expression on immune-
related signalling pathways and compared pairwise correlations between molecules involved in the pathway. Given the extensive cross-talk among molecules 
of the pathway, pairwise correlations were controlled for the expression of other components in the pathway by using Gaussian Graphical Model. 

1. Partial correlation coefficient between 
any two genes with the effect of other 
genes in same pathway removed.

r
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2. The difference of partial correlation 

coefficient of two genes between 
FKBP5-low and -high expressed groups.
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3. The p-value of a differential gene pair is 
calculated by permutation test.

pcor < 0 pcor > 0

A B

FKBP5-effected gene interaction The interaction between the nodes with border

showed a significant change of pcor between high and low FKBP5 groups (rlow =
0.15, rhigh = �0.25 and p = 0.0011), after controlling for age, sex, and cortisol.

The Co-IP experiment indicated that FKBP5 acts at the protein level to promote physical interaction of two kinases coded by CHUK and MAP3K14.

Euclidean RDCThe following diagram shows a brief concept of RDC method:

CHUK CHUK

MAP3K14MAP3K14



Kernel CCA  
FUKUMIZU, BACH AND GRETTON
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( )ĝ Y
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( )ĝ Y

X

Y

Figure 1: An example of kernel CCA. A Gaussian RBF kernel k(x,y) = exp
(
− 1
2σ2 (x−y)2

)
is used

for both X and Y . Left: the original data. Center: derived functions f̂ (Xi) and ĝ(Yi).
Right: transformed data.
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(
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1
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n
j=1g(Y j)

)2
,

and a positive constant εn is the regularization coefficient (Bach and Jordan, 2002). As we shall
see, the regularization terms εn∥ f∥2HX

and εn∥g∥2HY
make the problem well-formulated statistically,

enforce smoothness, and enable operator inversion, as in Tikhonov regularization (Groetsch, 1984).
For this smoothing effect, see also the discussion by Leurgans et al. (1993, Section 3).

Figure 1 shows the result of kernel CCA for a synthetic data set. The nonlinear mappings clarify
the strong dependency between X and Y . Note that the dependency of the original data cannot be
captured by classical CCA, because they have no linear correlation.

2.2 Cross-covariance Operators on RKHS

Kernel CCA and related methods can be formulated using cross-covariance operators, which make
the theoretical analysis easier. Cross-covariance operators have also been used to derive practical
methods for measuring the dependence of random variables (Fukumizu et al., 2004; Gretton et al.,
2005a). This subsection reviews the basic properties of cross-covariance operators. For more de-
tails, see Baker (1973), Fukumizu et al. (2004), and Gretton et al. (2005a). The cross-covariance

364



Deep Canonical Correlation Analysis
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Figure 1. A schematic of deep CCA, consisting of two deep
networks learned so that the output layers (topmost layer
of each network) are maximally correlated. Blue nodes
correspond to input features (n1 = n2 = 3), grey nodes
are hidden units (c1 = c2 = 4), and the output layer is red
(o = 2). Both networks have d = 4 layers.

same way, with di↵erent parameters W 2
l

and b2
l

(and
potentially di↵erent architectural parameters c2 and d).
The goal is to jointly learn parameters for both views
W v

l

and bv
l

such that corr(f1(X1), f2(X2)) is as high
as possible. If ✓1 is the vector of all parameters W 1

l

and b1
l

of the first view for l = 1, . . . , d, and similarly
for ✓2, then

(✓⇤1 , ✓
⇤
2) = argmax

(✓1,✓2)
corr(f1(X1; ✓1), f2(X2; ✓2)). (9)

To find (✓⇤1 , ✓
⇤
2), we follow the gradient of the correlation

objective as estimated on the training data. Let H1 2
Ro⇥m, H2 2 Ro⇥m be matrices whose columns are the
top-level representations produced by the deep models
on the two views, for a training set of size m. Let H̄1 =
H1� 1

m

H11 be the centered data matrix (resp. H̄2), and

define ⌃̂12 = 1
m�1H̄1H̄

0
2, and ⌃̂11 = 1

m�1H̄1H̄
0
1 + r1I

for regularization constant r1 (resp. ⌃̂22). Assume that
r1 > 0 so that ⌃̂11 is positive definite.

As discussed in section 2 for CCA, the total correlation
of the top k components of H1 and H2 is the sum of the

top k singular values of the matrix T = ⌃̂�1/2
11 ⌃̂12⌃̂

�1/2
22 .

If we take k = o, then this is exactly the matrix trace
norm of T , or1

corr(H1, H2) = ||T ||tr = tr(T 0T )1/2. (10)

The parameters W v

l

and bv
l

of DCCA are trained to

1Here we abuse notation slightly, writing corr(H1, H2)
as the empirical correlation of the data represented by the
matrices H1 and H2.

optimize this quantity using gradient-based optimiza-
tion. To compute the gradient of corr(H1, H2) with
respect to all parameters W v

l

and bv
l

, we can compute
its gradient with respect to H1 and H2 and then use
backpropagation. If the singular value decomposition
of T is T = UDV 0, then

@corr(H1, H2)

@H1
=

1

m� 1

�
2r11H̄1 +r12H̄2

�
. (11)

where
r12 = ⌃̂�1/2

11 UV 0⌃̂�1/2
22 (12)

and

r11 = �1

2
⌃̂�1/2

11 UDU 0⌃̂�1/2
11 , (13)

and @corr(H1, H2)/@H2 has a symmetric expression.
The derivation of the gradient is not entirely straight-
forward (involving, for example, the gradient of the
trace of the matrix square-root, which we could not find
in standard references such as (Petersen & Pedersen,
2012)) and is given in the appendix. We also regularize
(10) by adding to it a quadratic penalty with weight
�b > 0 for all parameters.

Because the correlation objective is a function of the
entire training set that does not decompose into a sum
over data points, it is not clear how to use a stochastic
optimization procedure that operates on data points
one at a time. We experimented with a stochastic
method based on mini-batches, but obtained much
better results with full-batch optimization using the
L-BFGS second-order optimization method (Nocedal
& Wright, 2006) which has been found to be useful for
deep learning in other contexts (Le et al., 2011).

As discussed in section 2.2 for deep models in general,
the best results will in general not be obtained if param-
eter optimization is started from random initialization—
some form of pretraining is necessary. In our experi-
ments, we initialize the parameters of each layer with
a denoising autoencoder (Vincent et al., 2008). Given
centered input training data assembled into a matrix
X 2 Rn⇥m, a distorted matrix X̃ is created by adding
i.i.d. zero-mean Gaussian noise with variance �2

a . For
parameters W 2 Rc⇥n and b 2 Rc, the reconstructed
data X̂ = W 0s(WX̃ + b1̄0) is formed. Then we use
L-BFGS to find a local minimum of the total squared
error from the reconstruction to the original data, plus
a quadratic penalty:

la(W, b) = ||X̂ �X||2
F

+ �a(||W ||2F + ||b||22), (14)

where || · ||F is the matrix Frobenius norm. The min-
imizing values W ⇤ and b⇤ are used to initialize opti-
mization of the DCCA objective, and to produce the
representation for pretraining the next layer. �2

a and
�a are treated as hyperparameters, and optimized on
a development set, as described in section 4.1.

Galen	et	al,	ICML,	2013	
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Derive statistics from these tests 
 
Define their distributions 
 
Derive testing procedures based on these data 
 
Implement feature extraction methods 
 
 
 
 

A wishlist and a joint effort re statstics and 
machine elarning 
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Summing up .... 

(as	long	as	you	pay	the	price	....)	

You	can	do	whatever	you	want	...		

Bernard	Prum	(†	2015)		




